Presentation of acquired peptide-MHC class II ligands by CD4+ regulatory T cells or helper cells differentially regulates antigen-specific CD4+ T cell response.
نویسندگان
چکیده
Activated T cells can acquire membrane molecules from APCs through a process termed trogocytosis. The functional consequence of this event has been a subject of debate. Focusing on transfer of peptide-MHC class II (MHC-II) complexes from APCs to CD4(+) T cells after activation, in this study we investigated the molecule acquisition potential of naturally occurring regulatory T cells (Tregs) and CD4(+) Th cells. We show that acquisition of membrane molecules from APCs is an inherent feature of CD4(+) T cell activation. Triggering of the TCR enables CD4(+) T cells to acquire their agonist ligands as well as other irrelevant membrane molecules from the interacting APCs or bystander cells in a contact-dependent manner. Notably, trogocytosis is a continuous process during cell cycle progression, and Th cells and Tregs have comparable capacity for trogocytosis both in vitro and in vivo. The captured peptide-MHC-II molecules, residing in sequestered foci on the host cell surface, endow the host cells with Ag-presenting capability. Presentation of acquired peptide-MHC-II ligands by Th cells or Tregs has either stimulatory or regulatory effect on naive CD4(+) T cells, respectively. Furthermore, Th cells with captured peptide-MHC-II molecules become effector cells that manifest better recall responses, and Tregs with captured ligands exhibit enhanced suppression activity. These findings implicate trogocytosis in different subsets of CD4(+) T cells as an intrinsic mechanism for the fine tuning of Ag-specific CD4(+) T cell response.
منابع مشابه
Human Leukocyte Antigen-G Expression on Dendritic Cells Induced by Transforming Growth Factor-β1 and CD4+ T Cells Proliferation
Background: During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-β1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is ...
متن کاملT cell receptor-independent CD4 signalling: CD4-MHC class II interactions regulate intracellular calcium and cyclic AMP.
CD4 is a coreceptor on T helper (Th) cells that interacts with MHC class II molecules (MHCII). The mechanisms mediating the effects of CD4 on responses by T helper cells to stimulation of the antigen-specific T cell receptor (TCR) are still poorly understood. Here, we demonstrate T cell costimulation via CD4 signalling independent of T cell receptor-mediated signals. Incubation of T helper cell...
متن کاملICSBP/IRF-8 differentially regulates antigen uptake during dendritic-cell development and affects antigen presentation to CD4+ T cells.
Interferon consensus sequence-binding protein (ICSBP)/interferon regulatory factor 8 (IRF-8) is a transcription factor that plays critical roles in the differentiation of defined dendritic-cell (DC) populations and in the immune response to many pathogens. In this study, we show that splenic DCs (s-DCs) from ICSBP(-/-) mice are markedly defective in their ability to capture and to present exoge...
متن کاملAntigen-specific CD4+ T cells recognize epitopes of protective antigen following vaccination with an anthrax vaccine.
Detection of antigen-specific CD4+ T cells is facilitated by the use of fluorescently labeled soluble peptide-major histocompatibility complex (MHC) multimers which mirror the antigen specificity of T-cell receptor recognition. We have used soluble peptide-MHC class II tetramers containing peptides from the protective antigen (PA) of Bacillus anthracis to detect circulating T cells in periphera...
متن کاملClass II MHC Self-Antigen Presentation in Human B and T Lymphocytes
Human CD4(+) T cells process and present functional class II MHC-peptide complexes, but the endogenous peptide repertoire of these non-classical antigen presenting cells remains unknown. We eluted and sequenced HLA-DR-bound self-peptides presented by CD4(+) T cells in order to compare the T cell-derived peptide repertoire to sequences derived from genetically identical B cells. We identified se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 186 4 شماره
صفحات -
تاریخ انتشار 2011